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- ABSTRAGCT

”Tﬁis paper deﬁeiops three algériﬁhms that maf be based exclusively on
hypersphe;icallf_deduced cuts, The algofithms only apply; therefore, to
problems sfructured'sd that-these cuts are valid., The algorithms.ére showm
to be fiﬁite.- |

A~. The general stfétegy“of.the methods-is simple. Let S 'denote the
solu?ion set for ﬁhe a;éﬁciated linéérlprogram and 1e§ _ek dén&te the
hypersphefe that coqtains S;' whiiel_é représents the ﬁoundary of 6.
T, symbolizes the i&cérsectiqn'of'all'the half épace restrictiéﬁs thaﬁ
aré adjoined.through cyele i -:1.' The current (reduced) solution set
is 8. In‘every.cyéig T: :)Si‘:and for some finiter i (unless an
integer SQlution.ié.élreédy‘1ocated)iwe pbtaih T, é B and T, N é-# i

which_impliés"Tf‘5(and"therefore 'S:)"contains.ﬁo,integar.solution.



1, Intreduction and Summary.

This paper describes two primary algorithms and one composite algorithm
for a special clﬁss of pure inﬁeger programs. The special class of problems
qonsists ofrproblems that admit hypefspherically Qedpced cuts. )

Lét the integer program be given as

max c'x

subject to: x € 8§

"x to be an all integer\vectdr.
%

'S is a convex polyhedron'in E* and ¢ 'is an integer vector. TFor:

our special class of problems, we have
5 cae
where  § is a closed hypercphe-v, and

x! is an inﬁgge; ;olution in .Sié x! €5 0N 5
where 8 ‘is-ﬁhe boﬁpdafy'of -é;

| Problems in tﬁié:class permit use'of speciai Cuts.“ The‘théory“behind
these cuts, generalizations of the hypersphere to mcre general convex sets
; contalning s, and dxscussxon of the scope of the Bpecial claSS of problems
is found in references (1], [2 ], [3] and [5] |

The algorxthms developed here are shown to be finite and. do not depend |

on the use of Gomory cuts to insure finiteness. Unfortunately, the finiteness
of these méthods is also substantiaily;independen; of épecial charactéristics
of the hyperspherically deduced cuts._ Finiteness will be achieﬁed even
though cuts considerably weaker than the hyperspherlcally deduced cuts afe
- used. Thls result.islachleved,a;_thefco§t of employlng t:ge-search methods

s

!



‘in certaln steps of the algorlthms, w1th ‘all the 1mp11e1t attenoant diffi-
cultlee of data storage and search

These‘algorithms_ere not de51gned.t0‘solve the“ihteger programming
"problem Aifgctly. -hether;_thelgoal‘is more elemeutary: to locate a single
integral x# €5 oridetermine.thet S N6 =-¢~land 'S- has no integer
solutioﬁs.4 e | | |

It is eompletely-strarghtforwerd te use these. algorlthms to construct
methodslforisolving ,max-c x SUbJect to x € §, and  x an.lnteger point,

o . S

For example 1f S contalns no 1nteger p01nt x then the problem has no

.solutron. If an 1ntegral %P € S is located by one of our algorlthms, then
we repeat the procedure by attemptlng to locate an 1ntegral X E 5, =
‘.(S n,{xlc x'> ct % '+.1]);',Repetitive appllcatlon ‘of this routine will
obv1ously solve the orlglnal 1nteger program.-

| The succeeding sectlons dlscuss flISt the generalvcharacterlstles of the :

two primary algorithms, and then the specrflcs of algorlthms I and II. An

‘exemplary comp051te method, algorlthm III is developed nextw Follow1ng

- that, the flnlteness argument is stated _The flnal sectlons discuss-*
'{related work and future research possxbilitles related to the developments

of thlS paper.




2, Notatlonal Conventlons.

| This paper w111 employ the follow;ng notet1ona1 conventlons

‘nkl ‘Vectprs will be-censldered‘tO'be column vectors and the superseript
t will always denete.ttahspesitien. | |

(- The sets lS_ andllB willfbeuaseumee to be subsets of Euelid%an

n-space, denoted by En

@ - The orlgln w111 belassumed to be located at. the center of 8.

ﬂe : The radlus of e 15 (p)E, Thus for any point y € 5 we have
y'y'= »p.

8 The symbols..x, ¥, z, and h w111 all be used for vectors 1n‘ E*.

Typically X w111 denote an element of S, and y an element of e

L; whlle 'z 1s neutral w1th resPect to these c13531f1cet10ns -ra utlllty
1nflelder. Normally h‘ e111 denote the flxed COEfflClentS of (ot a notmal te)
“a hyperplahe equat1oe. | | o |

:e L" Slnce the constralnts of 1nterest here w111 always non-~ trlvlally
Llntersect e, 1f h E G then ‘the constralnt hty < ' w111 have o

-p < v < p.



3. A General Outline of the Algorlthms.;

Both of the prlmary algorlthms (I and II). developed in this paper have
';common procedural regularltles that are. outllned in thlS sectlon. Subse-
iquent sectlons w1ll 1ntroduce the procedural detalls that dlstlngulsh the.p
two partlcular methods. The typlcal cycle of these algorlthms conSLSts of
two pheses,r 1 shall 1abe1 these phases the S- cut phase ‘and the e tangent

“phase;

Baé ,S—Cut Phase.

| ‘Ih thefSacut>phase an extreme poiht xi;l of,-S1 (the current,
‘ reduced.remdant of .é)‘ is locetedy ;ift sf‘ is,an.integer pcint the pros‘
cedureiterminates. Otherelse we generate a out that ‘removes .x?.“from fSi{o
l.:ﬁenqte.hyi.ﬁi the feasxble halfspace of thls cut. Hi is theh used to.
redﬁee 'SL ftol SJ;;; (1 e;, SHl = 8§, nu ),4 and to effect a simrlar
_reductioo-for the‘ e-tangent phase.

| Locatlon of x in the S cut\phase is. aecomollshed by solvtng a -

'“,11near program. The solution set of this 11near program is“Si.d The-

'7,;ob3ect1ve functlon may be selected arbltrarlly in the flrst cycle and

tthereafter thls datum is provided as. - an output from the B-tangent phase.'}hf;

x3b,; 8 Tangent Phase.

" The 9 tangenc phase serves t:wo purposes. (:’.) to proﬁide a meaaure of
the possibility t:hat 1nteger points exist in S1 (hence in S) and
(ii) to locate ptospect:.\rely reasonable regions" of '8y 'inl _which integer )
..solutions .may ',be sought, | | | .

S Let T1 = ﬂ Hk. ‘Clearly pSi chl;'
=1 .

The goal of thls phase is to flnd a pornt y € (T, ﬂ 8 ) If T, N8



is empty then- S; N é_ is. empty :and né'integer solutions exist in 8, ‘or

in~_S;' If a point yi E'(Tl[ﬂjé)  is716cated, then yi s used to

generate an objective function for the next iteration of the S-cut phase.

o To see the rationale for this uée of ¥!,. note that yl € T, implieé

yf has not‘yet_beénreliminated from S (if y! € S) and yi Eﬂé‘ implies

y* is an integer solution (if - y* € 8). Henice ~y' is a prospective

integer solution,  Now let h' = y' denote the vector of coefficients for the

supporting hyperplane®’ (of Q) 'at'.‘yi . IE yi is in S then y! will bé,:i

the optimal solution to
" max h' + x . subject to x €8, ,

which‘is-fhe problem (induced by ‘hf)' in:the'S-cut:phase.

1 ht =y! follows from the center of ©_ being the origin.\ y! is a
- vector from the origin to a point in 8, The set {y|(y'")'y = p} is
" ‘the tangent hyperplane to 6 at y', c : o



b, Speéifié Description of Algorithm I.

The description of algorithm I is given first in general summary form,
Following that,; specific methods of implementing certain steps in the

algorithm are discussed.

4.43. Procedﬁral Outline,

Initial Step

En

3
o
i

‘Repeated Step

g-Tangent Phasé; index = i

1, If T, Neg-= @ stopt § ;@ntains ho integer solutions,

2, If Ty N b # B, locate y' € (T, N B)."

‘(Steps 1 ahd 2. are ac@omplished by solution and analysis of an ”
auxiliary problem described below),

vt

)

3. Define h!

4. Go to the S§-cut phasé,.

S-Cut Phase; index = i
1. Solve: max(h')* + x subjeét to x € Sy.
Denote the optimal solution by x!. -

2, If =

-~

1g an Integer solution, stop. A solution has been
obtained,

3. If x' is not an integer solution, generate a new halfspace

restriction

H, = {z](h*)*'2 < v,}, where v, is a scalar



satisf?ing Gl > v, ;2 v, .1 ' g L yT
(Definition"'of v, and vy, 1is given below.) .
4. Redefine Sl+1 =S, NH

I-IT

y+1 = Iy N Hy

Advance the index to i + 1, and go to p-tangent phase.

4b. Discussion

rThefe are two main&ambiguities in this statement of algorithm I. .Step‘?
2 ofifhe g-tangent phase requires "gcation" of y' € (Ty 0 g). How is
this step accomplishedf When 1 =0 and Tp - E', an arbitrary point
on-ré. may be SQIQCtéd‘. When i.> O,l solution and analysis of the
jauxiliary‘problem dese;ibed below in section 4e prevides'one~method for
1ocating' vyt or determinihg ehat T. n 8 :is empty. |

"The second amblgulty 1nvolves the depth of the cut - (h')'x < vy
adJOlnEd in step 3 'of the S-cut phase. The maximum depth of the cu;lcap

be determlned by conSLderlng the points where edges inc1dent at x'

"HinteISECt_-e. Let - K denote an index set for the edges 1nc1dent at x*

 eﬁd leﬁ .ki? ‘symbollze the point of ‘intersection of the -k'" edge thh
‘ 1;'= max Ehi)fx‘? B 3 T
‘ kEK o : -': L o -
The theory justlfylng convexity cuts -.5ee [1 ], {2 }, [5]. - showe teat;.
if v,y a v, the cut w111 remove no 1nteger solutlons from _Si.. To remove

some points f:ém Si, the cu; must satisfy.

| (h‘)‘.‘ wx & (hi)ixt =V,

The range [v,, v;) ‘is permitted for v, because setting v, =Y, may



not be universally advantagepus.‘”CoﬁsiQQr, for example, the relation between
Ty and T,,, = (T N H;)‘, In the @-tangent phase (in cycle i+ 1) it is
neceséary tO'determinerwhether tﬂe new extreme points‘in T;+1 {(and not in
T,) are in _é. This séérch ﬁay bé e;sier to conduct when the cuplthgt

determines H, 'is shallower.. ' _ %

4e, The Auxiliarvy Problem,

There are many ways tojimpléﬁent gteps 1l and 2 of the e-tangenf phasé,
%nd while only one specific method is preséﬂtedahere, the pbssibility of
ﬁodifyiﬁg the algorifhﬁ-by éitering'the implémeqtafion of these steps should
be récoghized.* | - |
We éropose the'sqlution of ;fﬁfobiem that'seeksta foint in .e that,
roﬁghly speaking, maximizes the "distance" froﬁlphe "closest! hyperplané
boundéry of :Ti. Hérg'”disﬁancef‘from a ﬁyperpiane-boundaryhis measured
in termé'of the,maghifudé afﬂthe élac§ ﬁariable associgted'with the halfspace con-
straint.'ilflthis magiﬁinldistanceis;negatiyq then ix% # aﬁd ﬁencer
T n e is empty.. If fhe diétahcélis:positivg-and éhé maximgl‘pain; ig.in.
‘é,. thenAwé;havé_fodnﬁ; y{, if thé‘disténce is poéitivg, and théjmaximizing*j:‘
point is i@teriér\td @, then a path of'edgeg'(hdﬁefullyf%ﬁprp)fwill.leéd ”;
from the mAximizing ﬁbint to eaéh Esfnér point in Tl'- Ihesé carnér'points"
(hopefully.‘r.mt too.num_i?,;ou;) can be"located and "tlested‘ fof mém‘b_ership in | 8. o
.:tThisrtesting éithe;'fipds a lsuitable‘.yi € 8 6r deterﬁines that_‘T‘ ne= Q.
o Fortﬁa.lly wersolvé the folldm'_.r_:g .éﬁ:giliary problem (PA):
- max u
‘subject tg,:(h*)t syt r, +tu=v, (k=20,1,.,.,i-1)
vty <es |

y unrestricted

u unrestricted



Let the optimal solution to (PA) be denoted by v, 4, £, (where r
symbolizes the vector of slacks from (PA))., Consider the following three

. }
cases ;.

i, u< g, : _ ‘ . N .

IV

II. u>0 and y* . f = P

I1I. 4> 0 and y* * y<p.

These cases have thé-foilowing in;erpfétatiqns:
I.,Aimplies Ti-ﬂ é is empty;
Ii; 'implies_ ;E.(Tl ﬂ'é)f_ Designaﬁe yt =y ,
IiI. requires‘é sﬁbsidiary'anﬁlysié.of'the sﬁlufion-setAfor‘ (PA).‘
‘.In;caée III we ignoré the noniineaf cpn$trainc:and invégtigate_basic
:feasible sdlu;ions to:.(PA) that:havé.lg =.O; _These.solptians-ére ;he
.corner;points of‘ T;. iet ¥, ﬁ,‘f-;designate_sucﬁ a splut£op._ | ]
If any coraner péinﬁ 5o1gti6ﬁ hés §;w‘ ¥ > p;‘;theh tﬁe sét Ti N §‘ “'
is ndt‘empty. ‘Tq“seélthis'nqté thaﬁlbqﬁh y lana :§'.arE'in,fTi“éﬁﬁl‘§l  '
fxis iﬁ-the'iﬁtgrior §f ‘é' while ?"i;_npt intefi§f'#6: 6;l:Acé§¥d£ﬁg1y fgegéwf
exiéts.a:poiﬁc v, :a-éonVEX combigaﬁipﬁw§f"§Ff;n§;3§; sugh,ﬁhatj‘§'6'§?;f;':~
. and ?ﬂé'if. Désiénate”_ff.? ?i; o | P J .. o
".AlternatiVély giéEX.cﬁrﬁer.poi£ﬁ,:f§, ﬁ,fi-'may}havg \9£|'_§-€'p,l'
This means that all the corner points of T, are in ‘thelintérxdf: of 6 .
8ince both T, and © are convex we have T, N § = . | | .
Wﬁile it is not my'fﬁrpose to discuss in this ﬁaper'detailad meﬁhods of
conducting the search alluded to in the above discussion of Case III; I be; "

lieve a brief comment is fitting on the fact1that.some'cyc1e5'qf this

algorithm require an exhaustive investigation of all basic solutions to (PA)

!
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that have u =0 (iéﬁoriﬁg-the hdnliﬁeér consfraint). Computdtionally
this is ée;tainly repuéﬁant._ Still, Somé‘mitigating-factors exist and should
be mentioned. These are: |
i) An intqger_séluti@ﬁ may be loﬁated before Cése ITT is encquntered.
ii) If the space contaiﬁing' T, and & has n . dimensions, then at
1eaét‘ n +71 cuts must ﬁ; present in (PA) before Case III can
occur, o
iii) In the first bccurénce of Case III there are only .ﬁ + 1 gxtreme :
boiﬁts-with_ u. = O; If in this instance T, N § + P and a cht‘
.must Be added,:it:is only neceséary, in the ne#t cyéle,.to‘iocate
(anew) thelnéwly.created extfemé- points for which._g = 0 and
:fi =0, While tﬂis:lattéf'task ﬁgx requiré extensive'searcﬁ it
_is certalnly p0531b1e and perhaps llkely that only "n new extteﬁe
po1nts w111 be created by the new cut and that 1ocat10n of these -
new points.w111 be‘comparatlvely stralghtforward.
ParadOXLcally 1t appears that locatlng all the new-extreme polnts is

entlrely stralghtforward if the cut (that creates the nev extreme points) is

lsuffic1ently shallow, :'
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5. . General Description of Algorithm IT.

- Algorithm I might be characterized-as "omnidirectional" in the sense
thatrthe points of yi' géherated in the .e—tahgent phase tend to distribute
! : - .

somewhat uniformly_oﬁer the scrfaee of 6. In any case there is no %uiltftn
bles 1n the algorlthm favorlng search in eny partlcular sector of @,

Algorlthm IT, in contrast has a deflnlte d1rect10na1 orientation. The
J_algorlthm is spec1f1ed in part by an initlal datum, the vector  d. - The search
conducted by algorithm II examlnes potentlal solutions y! '1n a sequence |
 that has monotonlcally decrea51ng values. for the expre551on dtyl = u, .

This algorlthm has the same general two phase cycle routine as
algorlthm I, The 8= cut phase is ldentlcal in many respects. a tangent
_fhyperplane to 9; denoted by h! 1s an input from the ¢- search phase. An
~extreme point ef 8, 1s located by 0pt1m121ng (h?)fx‘dover all ix €S, |
If the Optlmal p01nt, i;; ;s‘lntegral (1n‘ 8) the procedure tetmihates,“
- otherw15e the cut (h! )tx %‘v{ isfdeveieped;-and usedhto redefi.ne”'S;,*1

“and T1+1 . The main dlfference ln this phase is an’ additional updatlng

'fl'step that is’ 1nc1denta1 to new. deveIOpments in the etangent phase.r

~The SPEClal characterlstics of thlS algorlthm re51de mostly in‘the “t .
Btangent phase. In very general terms the procedure of this phase is as

follows, , | | | -

| .i,f Locaterthe point 1n T ﬂ 8 that maximizes a fixed linear function -
d‘y‘=lu}"Let_ ¥ denote the: maximizxng y S (T: nlé),

2. Define W= min dtx,
C '_xQS.
o, Ifl.d‘§* <'E; stop:f:no‘integer'sqlutionseeXist ih S.

Otherwise designate y' = y*



The principal problem‘here is'fhg search required in step 1.  Locating
the point that maximizes ~d'y subject to y € T, N B is not straight-
forward -- because of the ndnéconvekit? of the set T, N8 . This

difficulty is met, in part at 1eést, by controlling-the development of T1
. ° 1 L0 . R
'so that limited incremental enumeration will reveal the solution sought in
! _ ‘

step 1.

53.'_Detailed Description of the Aigorithm 1I.

Initial Step. .

1. Develop n cuts (h)'y < vy (i =1,...,n), such that the

12

point y* satisfying (h')'y* = vy, (i-= 1,...,n)  is interior

‘to 6., (Such a start is always possible: e.g., choose a non- -

'Adegehéréte extreme point of 5, and let the hyperplanes incident

_ at this point be defined as (h')'y'= vy (i = 1,...,n).) We

'assuméfthat'the relation of the vector d' to these n cuts

is such that “dty*ra d*y  for all y satisfying i)t .y S:vi;

«

(i = 1;.;);n).

'2."Défine~s1 —iS.ﬂ-(x|h1x < vy, ‘i = 1,..,,n},l andj“

it -

T, = {y|h'y Svy, 1=1,...,n}

3. List all édges”incident"at.'y+. Denote these ?dges by El,;.f;E
- List also’the P°inﬁs"§;,,..,§"A'whefe‘theSe'edges,‘considered

as edges 'of T,,'(feasibly) intersect @, and, finally, list the

'd-functioﬁ values d{if =u!, (L =1,...,n0).

Repeated Step, .

g-Tangent Phase; index = i.
1. Select from the list.the edge E, for which dtyx = u > u!
for all edges E;  on the list, If u* <w stopfrno integer

points exist in §; otherwise go to 2.

R



4,

Designéte -yi = y*. Define ht =yt .
Remove E,, y%, and u* from the list.

Go to the S-cut phase,
’ : .

S -Cut Phase; index = i.

5b.

1f Sclve max (hi)kx, " subject ta # € §,. Denocte the optimal
solution to this problem by x'.
2, If x' is an intéger solutiﬁn, stop; otherwise generate a new
restriction:: |
(h')x < vy
where Vy is,a,écalaf constantfsatisfying
| v, _<_ vy, < V. (See definition .o.f iz and v, above
p. 7 );' | |
3. Redefine- Sl+1 = 5y N Hy and'_f1+1 =T, N Hy lwhére H, =
[zl(hi)‘z S vi}.' | | |
4, List the ﬁew:édgeé, E; forméd by the inter;ection of'the boundary
§f jﬂz _with'planés of T,. Also list the associated ﬁoints v
where these new‘edges‘(feasibly).intersect B, and the aésociated
ld-function values d'y = u, . |
5. Reﬁove from-tﬁe_lié£ any edges E - (as weil as v and* u) for
which ¥ ¢ H, . , | o
6. Go to the é-tangent phase éith index = i + 1.
piscussion.

In the 4th and 5th steps of the S-cut phase we requiré the listing of all

" pew edges of T,,, that feasibly penetrate 8, as well as the discard)

of existing listed edges'that'nb longéf feasibly penetrate é. No

.

-
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specific method for solviﬁg this problem is offered here. It is elear that
éll new edges are in the boundary of H; énd that all eliminated edges must
_ penetrate H;. It is equally clear that a finite tree search will locate all
new edges, and that a finite sequence of tests will detect all eliminated
edges. Relatively eﬁficient and a&aptivc methods undoubtedly exist fok con-
- ducting these searches and for gfficiently storing essential information
required for the list, and by the 1ist revision procedures. The omission of
these details in thig paper reflects.(i) time pressﬁre and (ii) the failure
of several comparatively simple trial methods tc‘be generally applicable. I
hope to repair this omission in a later paper,

It should_aléo be noted that the compreﬁensive listing oﬁ all edges that
feasibly_fehetrate § is not essential‘td tﬁe methpd. It is only necessary
to fipd the edge E that maximizes dty. fhis can be aécomplished by 1ess'
.storége 6f‘edgés and'mcre search. The routine presented in the formal
statement of the ﬁethod ﬁas;qhosen primarily because it seemed amgﬁable to
'more succinct eﬁpre551on. h

It is worthwhlle to emphasize that Algorlthm 1I progressés by implicitly
generatlng a sequence of 1eg1t1mate cuts of the form dtyt < uif wzth u1
rdecreasing monotonically with rgspect tozlncreases in 1.

To see this, note first that initially T, ié a coﬁe; with its yertéx
interior to © . The vertex, y*, maximizes dty over all y € T, ;‘

Consider the continuum of hyperplanes d'y = u where u < d"y_*, and
the continuum of intersections of these hyperplanes with T + Denote the
set T, N (y]dty = u} by D(u), where ug aty* . Each set D(u) . is
thé convek.hull of points on the edges that emanate from y'. .The largest
Qalue of u for which D(u) intersects © must be equal to the value

dty*, determined in step 1 of the §-tangent phase. Clearly y* maximizes
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d'y subject to vy é.Tl N8, since for all wu > d'y*, D(u) N 6 = @. This
- means that the ifmplicit cut d'x < d*y* is legitimate,

.In subsequent cycles, the same essential relations portrayed above con-
tinue to,hold; ' The cut written in the first iteration of the S-cut phase

s .

causes D{(d'y*) to be redﬁced by inﬁerséction with H;, so that tgpically,
u can bé reduced ﬁelow the value d'y* whiie D{u} remains contained in the-ﬂ
strict interior of 8. All new édges - created by intersection of T, ﬁith'.
H, - that feasibly iﬁtefsect é';are listed. - Hence it is possible tolkeep
account of D(u), which is fhe_cdnvex hull of points on the 1isﬁ§d edges
that have dty =u, and wu can be deéreased until the set D(u) ‘again
intersects 0. The cycle is repeated until either an integer point.is loéated
in the S-cut phase, or untii the value dt§*' at some stage iélless than w.
| it shoﬁld.be pointed out that although cytlé to cycle monotonic progress
" with réspect to the ﬁalue ofl &tﬁ% is achieved by tﬁis method, fhe finiteness
érgument'given in this paper does potldepehd on that prograss. AAdditionally,l
progresg of‘ﬁhis ﬁlgoriphm should make ip feasibié to drop parﬁicular hyper-'
planes froﬁ the definiéion of T, and 8, after thesé hypérplanes become
redundant to the progrésé.of.the algbrithm.. Wﬁilé‘détaiied fules fpr
dropping redundéﬁt hyperﬁianes have ﬁqt been included here, there wéuld appear :
to be no intrinsic conceptual problem ba¥ring development of such'fﬁles;h

In cases where the.function d'x = e'x, i.e., d'x is thenobjgctive
function for £he underiying‘integer program, it may be_possiﬁie to consid;-
erably expedite terminatioﬁ of the éléorithm; Supﬁose some feasible
'.integér solutions in 8§ are known and x® 1is the best of these in terms

b

of objective function value, Then by setting w = d*x® + 1 we festrict

b

the search of the algorithm to points in § that dominate x in terms

of objective function value,
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6, A Composite Method: Algorithm TIT.

Second level algorithms can be designed that use algorithms I and/or

IT in the role(s) of sub-routine(s). Algorithm III provides a specific

!
example,

Algorithm III
1. Select vectors d'; d°, ..., d® and scalars Uy y Upsanes U,
so that the set, w = {y[(d*)'y < u,}, satisfies (S Nw) <8
cand SNwN =@, |
‘ 2, Set 1 = 1.
3. Commence execution of algorithm II, with d = ﬂi .
- 4, Continue iterations'of algorithm II ﬁntil an integer solution
is located, or until (di)ryx < u, in some cy;le of the.
f-tangent phase. When the latter event occurs, go to 5;'
5. If i <m, seét :l..== i+ 1 and go té 3; otherwise stop:
S contains no integer solutions.’
The termination in step 5 is justified because setting Tm =
immediately vyields a solution for algorithm I, Algorithm II is employed
in steps‘B and 4 to achieve the collectioﬁ of sufficiéutly deep cuté
required in the definition of m.-‘There exist numerous ways ﬁo-gEnerate
w with the réquisite préperties. 'For efficiencylit'isliméortant:to choosé_
the d!, u, i=1,:..,m so that the total coﬁputational effort required
An éteps 2 ah& 3 is minimized. Thus the specification of the cuts that
define w 1s a substantial subproblem in which interesting possibilities
 exist for adaptation to problem classés, and to individual problems. |
More flexible variants of this method can be imagined in which w is

specified dynamically - in the course of solving the problem, and in response

!



to specific structural characteristics of § and T - instead of the

static, a priori specification in algorithm 1T,
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7. Finiteness.

Both (primary) algorithms described in this‘paper can be shown fo be
finite on the basis of an elementary argument.

The founda%ion of this_argument is ﬁhe finite number qf non-integral

extreme points in S8 and the fact that each non-integral extreme point
' L

in 8§ is a finite distance from 8.
Let x*X be an arbitrary non-integer extreme point of 8., Let K be

an index set for all non-integer extreme points of 3.

bBefine:
HG) = (n|h € & and h'.+ x* 2 h'x for all x € §l,
v(x¥) = max htx* |
heH(x¥)

¥ = max v(x¥).
k€K

Hence for all cuts developed in the'S—cuf phase‘we have v, < Gx g'ﬁ .
Note that for k € K, h'x* > p is impossible since h'x* > p =x* € 9
and 6§85, while [h'x¥ =p and xf € gl = x* € B = x¥ 'is integral,
This shows that V < p. For all ;hé developed in the course of either
"algorithm we must have
hiytyi*n < v, < V< p for all m2 1.
‘S8ince y'*® = hi*® - we have
CbtRMr <V <p .

Now-sﬁppose that either algorithm generates an infinite sequence of
'cycles. Then we have [hi}?=1 . Since each h?-E é, and & is compact,
{h!). must have a limit point. This means that |lh' - hit?|| < ¢ for an

arbitrary e > 0 and i sufficiently large. But

18-



| X
Hh‘ - hi‘“ﬂ” e I(hi)thi +-(hi+m)thi+m - Z(hi)th“'m!"?'

’ i
Hhi - hi-i-nl_:‘l‘ = lzp . z(hi)thi-_l-mle
kN
= J2(p - (hi)thi+m)la
s . ,
, o _
=20 - M]E .

Since ¥ is a fixed comstant less than p it is clear that [|[h! - hitef
has a fixed positive lower bound for all i, This contradicts our

' assumptioﬁ of an infinite sequence of cycles.

'REPRODUCIBILITY op 1mi
| CIBI HE
 ORIGINAL PAGE IS poop ©
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8, Related Work.

The papers on canvexity cuts, intersection culs, and hypereylindrical
cuts [1],.[2], [5}] constitute a éeneralrbackground and source of concepts
for this paper.i More épecifically the Glover and Klingman paper [3], which
“develops a finite convexity cut method (based on Tui's work [4]); perides
implicitly an instance of tﬁe basic cqnceptual strétegy emplpyed here, The
common‘conCepﬁ employed in bofh ?apers is the development of a set .that
eventually ié between S and 8. In éur paper T‘1 plays this role. We
maintain the relation T, DS, in every cycle and make progresé with each
cycle toward the goal of T; N 6=@., The "in between'" set in the Tui, Glover
and Klingman develcpment, deﬁoted]by D,, 1is always in §; and wbile D;
may intersect g, there are no infeger points in D, N s (sincé if such
exist they are autqmaticallyldiscovered and the (gub) problem is soived).

In theif method progress is made foward the goal D, 2 5; and the progressive
alteration of D isjone of exgénding the set D, in each stage when it,ig
discovéféd that:a.hyﬁerplane'boundary of& D, cuts S, Thus this baper and
' .the Tui., G}§ver and Kiingmaﬁ papers illustrate particulgr tactical plans |

_ -for realizing the general strategic goél of constructing a éet that.is

‘ 'a.ppropriatély between S, aﬁd é.‘ It is ‘clear that other combitiatorial .
.vériants of Ehese tadtics aré possible within the frémeﬁofk of the same

‘ straéegic goal.
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9. Loose Ends and Speculation.

As has already been 1nd1cated at vatlous points in thlS ‘paper there are
Several opportunities for generating new algorithms by varying certain elements
of the given alﬁorithmb or by the_construction of composite algorithms. Some .
further opportunities of this sort will be listed here. '

B It may prove eseful toreﬁploy other convex sets in the role played
by & in this paper -- see [ 2] and [1 ]7.

n The cut employed here is parellel to h', the objective function
(normal) used as‘a_"target" in locating x'. This option was selected
mostly for=expoeitiona1 convenience. The usual hype:spherical
cut (available.from x1), which is typically & deeper cut, can also
be employed.’ - .

B It wouid eppear'poeeible to develop variations of algorithmrl in whicﬁ

.. partially rapdomiiedisearch,is:used_in the e-taegent phase, |

No computatien'has ‘been attempted with any oflthe three algorithms,
'Speculating, it w0u1d appear that algorithm I might be more eff1c1Ent at
locating 1nteger solutlons - particularly if they are relatively plentifu1-~~
. than 1n demonstrating that none exist in §. Thus it appears to have better:
 prospects in the "prlmal" role of locating nearly optimal or optimal solu-
':tions expeditiously. Algorithm II,_alternatively, may be more useful in |

‘determming that an optimum has been obtained when it is employed with

‘d = ¢ and with W set equal to the next mteger above the objective furiction
‘Avaiue of the best known integer solution in S,

B Since the efficiency of these methods would appear to depend essentially
on geOmetric relations involving 8 "and 8, it is possible that they may
‘provide additional motivatzoq and means to more effeCtive classification of

problems in terms of characteristics that influence ease of solution,
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